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Abstract

Owing to their plasticity, intrinsically disordered and multidomain proteins require descrip-

tions based on multiple conformations, thus calling for techniques and analysis tools that

are capable of dealing with conformational ensembles rather than a single protein structure.

Here, we introduce DEER-PREdict, a software program to predict Double Electron-Electron

Resonance distance distributions as well as Paramagnetic Relaxation Enhancement rates

from ensembles of protein conformations. DEER-PREdict uses an established rotamer

library approach to describe the paramagnetic probes which are bound covalently to the

protein.DEER-PREdict has been designed to operate efficiently on large conformational

ensembles, such as those generated by molecular dynamics simulation, to facilitate the vali-

dation or refinement of molecular models as well as the interpretation of experimental data.

The performance and accuracy of the software is demonstrated with experimentally charac-

terized protein systems: HIV-1 protease, T4 Lysozyme and Acyl-CoA-binding protein.

DEER-PREdict is open source (GPLv3) and available at github.com/KULL-Centre/

DEERpredict and as a Python PyPI package pypi.org/project/DEERPREdict.

Author summary

The accurate description of the structure of a protein is pivotal to fully understand its bio-

logical function. A large fraction of eukaryotic proteins is intrinsically disordered or con-

sists of multiple folded domains connected by disordered regions. The structure of these

proteins is highly flexible and can only be described by large ensembles of conformations.

The characterization of these ensembles can be achieved by integrating in silico molecular

modelling and simulations with experiments. Here, we present DEER-PREdict, an open-

source software program to conveniently and efficiently calculate the observables of two

biophysical methods, namely double electron-electron resonance (DEER) and paramag-

netic relaxation enhancement (PRE) nuclear magnetic resonance. Both techniques pro-

vide distance information for highly dynamic systems and involve labelling proteins at
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one or more sites with flexible probe molecules. The DEER-PREdict package combines

previously developed and validated methods for placing multiple conformations of a nitr-

oxide molecule at the protein sites with the rapid calculation of DEER and PRE observ-

ables from large ensembles of protein structures. Through examples, we illustrate the use

of DEER-PREdict as a tool for interpreting experimental results, validating molecular

models of flexible proteins as well as designing experiments.

This is a PLOS Computational Biology Software paper.

Introduction

A detailed understanding of protein function often requires an accurate description of the

structure and dynamics of a protein. The characterization of protein complexes as well as

multi-domain and disordered proteins is typically achieved by combining experimental tech-

niques of distinct spatial resolution [1]. Among the many different experimental techniques

that may be used, we focus here on (i) a pulsed electron paramagnetic resonance (EPR) tech-

nique called double electron-electron resonance (DEER) and (ii) a nuclear magnetic resonance

(NMR) method called paramagnetic relaxation enhancement (PRE). While the two methods

differ substantially in their physics and applications, they have in common that they generally

involve adding so-called spin-labels to the protein of interest.

DEER, also sometimes known as pulsed electron-electron double resonance (PELDOR),

[2–6] relies on probing magnetic dipole-dipole interactions that are sensitive to distributions

of residue-residue distances ranging from�1.8 nm to�8 nm, and up to 16 nm in deuterated

soluble proteins [7–10]. For proteins, DEER generally requires site-directed spin labeling

(SDSL) to functionalize a pair of selected residues with paramagnetic probes, e.g. 1-Oxyl-

2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate (MTSSL) [4].

PRE NMR also makes use of SDSL to provide information on the average proximity of pro-

tein backbone nuclei up to�3.5 nm away from the unpaired electron of the paramagnetic

probe [11]. The dependence of the rate of relaxation enhancement on the electron-proton dis-

tance, r, scales as hr−6i, making the measurement particularly sensitive to contributions from

different probe conformations [11].

Since spin labels are conformationally dynamic, both protein and paramagnetic probes

need to be described by conformational ensembles to obtain accurate predictions of DEER

and PRE observables from molecular models [12–14]. Molecular dynamics (MD) simulations

are one approach to obtain conformational ensembles that model the structure and dynamics

of spin-labels for the calculation of EPR and NMR data [15–18]. While such analyses can pro-

vide unique insight into the motions of and interactions between protein and spin-label [19],

they may be relatively expensive computationally. Further, many studies integrate results from

multiple probe positions, or pairs thereof, which may be difficult to represent in a single MD

simulation with explicit representations of the probes.

Another approach is to use conformational analysis of the spin-label combined with model-

ling of the dynamics [20–23]. Such analyses suggest that the conformational variation of spin-

labelled sites is rotameric, i.e. it can be relatively well described by a finite number of defined

structures. Thus, in the calculation of DEER data, rapid modeling of dynamic paramagnetic

probes was made possible with the introduction of the rotamer library approach (RLA) applied

to the MTSSL probe by Polyhach et al. [24].
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Here, building and expanding on earlier work [3, 24–27], we developed a software tool for

fast predictions of DEER and PRE observables from large conformational ensembles using the

RLA. We present our implementation, distributed as the DEER-PREdict software, and test

it against experimental data on HIV-1 Protease, T4 Lysozyme and the Acyl-CoA-Binding

Protein. This software has been previously used for the calculation of both intra- and intermo-

lecular DEER and PRE NMR data [28, 29], and has some overlap with the features in Rotamer-

ConvolveMD [25] (github.com/MDAnalysis/RotamerConvolveMD). DEER-PREdict is

open-source, documented (deerpredict.readthedocs.io) and open to contributions from the

community.

Design and implementation

DEER-PREdict is written in Python and is available as a Python API, which facilitates its inte-

gration within larger data pipelines. Predictions of DEER and PRE data are carried out via the

DEERpredict and PREpredict classes. Both classes are initialized with protein structures (pro-

vided as MDAnalysis [30] Universe objects) and spin-labeled positions (residue numbers and

chain IDs). As shown in the Results section, the calculations are triggered by the run function,

which also sets additional attributes such as the paths of input and output files as well as exper-

iment-specific parameters. Per-frame data is saved in compressed binary files (HDF5 and

pickle files) to allow for fast calculations of ensemble averages in reweighting schemes.

For the presented software, we adopt a procedure of rotamer placement and evaluation of

labeled sites which is analogous to the RLA of Polyhach et al. [24], and we build on this previ-

ous work to implement fast calculations of DEER and PRE observables from large structural

ensembles, such as MD trajectories.

Rotamer library approach

Rotamer libraries have a long history in protein structural analysis [31], with an early applica-

tion being to study side-chain packing [32]. Several other applications of this approach were

later employed, e.g. in homology modeling and protein design [33, 34]. In our implementa-

tion, the RLA is used to insert the rotamer conformations of a paramagnetic probe at the spin-

labeled site and to calculate the Boltzmann weight of each conformer. By default, we use the

MTSSL 175 K rotamer library by Polyhach et al. [24], which was filtered to include only the χ1

χ2 conformations that are most commonly found in crystal structures of T4 Lysozyme [35]. As

shown by Klose et al. [26], this selection criterion increases the accuracy of the calculated elec-

tron-electron distance distributions. The code is, however, general and it is possible to add

new rotamer libraries by providing a text file containing the Boltzmann weights of each rota-

mer state pinti , a topology file (PDB format) and a trajectory file (DCD format) where rotamers

are aligned with respect to the the plane defined by Cα atom and C–N peptide bond. These

files should be included in the lib folder and listed in the yaml file DEERPREdict/lib/libraries.
yml. The default MTSSL 298 K MC/UFF CαSδ rotamer libraries of the Matlab-based MMM

modeling toolbox [13] are also provided in the DEER-PREdict package.

Following the alignment of the rotamer to the protein backbone (Cα, C and N atoms), the

calculation of the Boltzmann weights is based on the sum of internal, �inti , and external, �exti ,

energy contributions. The internal contribution is taken from Polyhach et al. [24] and results

from the clustering of representative dihedral combinations from MD simulations. The nor-

malized frequency of each cluster throughout the MD trajectory was used to determine the

Boltzmann probability, pinti , of a given ith state, which readily can be converted into an internal

energy contribution, �inti , via Boltzmann inversion. On the other hand, the external energy con-

tribution is calculated on the fly as the dispersion interaction energy between heavy atoms of
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rotamer and protein residues within a 1-nm cutoff, using the pairwise 6-12 Lennard-Jones

potential of the CHARMM36 force field, with atom sizes scaled by the input parameter sig-
ma_scaling, which defaults to 0.5 as in the MMM modeling toolbox (http://www.epr.ethz.ch/

software) [13].

The overall probability of the ith rotamer state is then calculated as

pi ¼ pinti pexti ¼ pinti
exp ð� �exti =kTÞ

Z
ð1Þ

where Z ¼
P

ip
int
i exp ð� �exti =kTÞ is the steric partition function quantifying the fit of the rota-

mer in the embedding protein conformation. Low values of Z result from large probe-protein

van der Waals interaction energies, suggesting a tight placement of the spin label either due

to a displacement of the rotamers or indicative of a wild-type conformation made inaccessible

by the presence of the MTSSL probe. Especially in folded proteins, probes located in closely

packed regions are likely to induce changes in the ensemble of the spin-labeled protein com-

pared to the native form, and should be avoided in designing SDSL experiments. Therefore, in

the calculation of DEER or PRE NMR observables, frames with Z< 0.05 are discarded to pre-

clude spurious conformers from contributing to the ensemble average [24]. For the MTSSL

175 K rotamer library, a Z cutoff of 0.05 is compatible with distributions of �exti values where at

most one of the 46 rotamers has �exti � 3 kBT while the rest has �exti � 7 kBT. We observed that

the results shown in this paper are virtually insensitive to the choice of the Z cutoff between

0.05 and 0.5 (see S1 Fig), therefore, in DEER-PREdict the default Z cutoff can be conveniently

replaced by a user-provided value.

Predicting the DEER signal from structural ensembles

Electron-electron distance distributions extracted from DEER experiments, e.g. using the

DeerLab package [36], have previously routinely been compared with distributions predicted

using the RLA implemented in the Matlab-based MMM modeling toolbox (http://www.epr.

ethz.ch/software) [13]. Since MMM intrinsically operates on single structures, we and others

had to resort to wrapper scripts to compute distance distributions of large ensembles, such as

MD trajectories [3, 25, 37]. With the program presented herein, we provide a tool to conve-

niently predict DEER distance distributions from large conformational ensembles, which can

be easily integrated in reweighting schemes such as the Bayesian/maximum entropy procedure

[1, 14, 38, 39].

For each trajectory frame or conformation of a given ensemble, the rotamers from the

library are placed at the spin-labeled position (Fig 1A) and the distances between all pair com-

binations of N-O paramagnetic centers are calculated. The resulting matrix of pair-wise dis-

tances is then used to compute the distance distribution weighted by the combined probability

of each probe conformation, pi × pj, with pi and pj being the conformation probabilities of rota-

mers i and j. After averaging over all the frames, a low-pass filter is applied to the distance dis-

tribution for noise reduction [40],

PðrÞ ¼ F

(

F � 1 P rð Þ½ � � F � 1 exp �
r2

2s2

� �� �)

ð2Þ

where F and F � 1
are the Fourier transform and inverse Fourier transform operators, respec-

tively, whereas σ is the standard deviation of the low-pass filter. The resulting P(r) is a smooth

curve even for the analysis of a single protein conformation (Fig 1B). The standard deviation

of the low-pass filter can readily be provided by the user through the option filter_stdev of the

run function in the DEERpredict class, overriding the default value of 0.5 Å. The average over
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the trajectory frames can be weighted by a user-specified list of weights e.g. to remove the bias

from enhanced sampling simulations.

The dipolar modulation signal can be back-calculated from the distance distribution, P(r),
via the following integral [41]

SðtÞ ¼
Z 1

0

dr PðrÞKðr; tÞ: ð3Þ

K(r, t) is the DEER kernel

Kðr; tÞ ¼
ffiffiffiffiffiffiffiffi
p

6ot

r

cos ðoÞ FrC
ffiffiffiffiffiffiffiffi
6ot
p

r !

þ sin ðDtÞ Fr S
ffiffiffiffiffiffiffiffi
6ot
p

r !" #

ð4Þ

where FrC and FrS are Fresnel cosine and sine functions, and ω is the dipolar frequency

o ¼
m0

4pħ
m2
Bg

2

r3
ð5Þ

where μ0 is the permeability of free space, μB is the Bohr magneton and g is the electron g-fac-

tor. The ranges of inter-probe distance and time are [0, rmax] and [tmin, tmax] with increments

dr = 0.05 nm and dt, respectively. The default values rmax = 12 nm, tmin = 0.01 μs, tmax = 5.5 μs

and dt = 0.01 μs can be overridden by the user. Following the correction of the experimental

DEER time trace for the intermolecular background [36, 42], the resulting form factor can

directly be compared with

VðtÞ ¼ 1þ l½SðtÞ � 1� ð6Þ

where 0.02� λ� 0.5 is the modulation depth of the experimental signal [43], quantifying the

efficiency of the DEER pump pulse [8].

Prediction of PRE rates and intensity ratios

In analogy to the calculations of electron-electron distances to predict DEER distributions, we

extended the use of the RLA to electron-proton separations to improve the accuracy of PRE

predictions. We focus here is on PRE NMR experiments that probe the increase in transverse

relaxation rates of any backbone proton due to the dipolar interaction with the unpaired

Fig 1. Probe placement scheme and comparison to DEER data. (A) A pool of 46 conformations of the MTSSL probe

from the rotamer library are aligned to the backbone of residues K55 and K55’ of HIV-1 protease. The color code

represent the Boltzmann weights of each rotamer, increasing from blue to red. (B) Electron-electron distance

distribution for HIV-1 protease spin labeled at residues K55 and K55’. The blue line is the experimental data from

Torbeev et al. [44] whereas the red line is the prediction using DEER-PREdict and a crystal structure of HIV-1 protease

(PDB code 3BVB).

https://doi.org/10.1371/journal.pcbi.1008551.g001
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electron of the paramagnetic probe:

Rox
2
¼ Rred

2
þ G2 ð7Þ

where Rox
2

and Rred
2

are the transverse relaxation rates in the presence of the spin label in the oxi-

dized or reduced (diamagnetic) state, respectively. We note that it is also possible to measure

PREs on other atoms and to probe longitudinal relaxation enhancement, and it would be pos-

sible to include such measurements in future versions of DEER-PREdict.

A description of the enhancement of the transverse relaxation due to dipole-dipole interac-

tions in paramagnetic solutions was first proposed by Solomon and Bloembergen [45, 46]

G2 ¼
1

15

m0

4p

� �2

g2

I g
2m2

Bse se þ 1ð Þ 4Jð0Þ þ 3JðoIÞ½ �; ð8Þ

where γI and ωI are the gyromagnetic ratio and the Larmor frequency of the proton, respec-

tively, whereas se is the electron spin quantum number, equal to 1/2 for nitroxide probe sys-

tems. The spectral density function J(ωI) can be described using a model-free formalism [47–

50], which takes into account the overall molecular tumbling in the external magnetic field as

well as the internal motion of the spin label:

JðoIÞ ¼ hr� 6i
S2tc

1þ o2
I t

2
c

þ
ð1 � S2Þtt
1þ o2

I t
2
t

� �

ð9Þ

where

tc ¼
1

tr
þ

1

ts

� �� 1

ð10Þ

and

tt ¼
1

tr
þ

1

ts
þ

1

ti

� �� 1

: ð11Þ

τr is the rotational correlation time of the protein, τs is the effective electron correlation rate

and τi is the correlation time of the internal motion (effective correlation time of the spin

label). For MTSSL probes, τs� τr and τc� τr [51]. The value of τc depends on protein size and

structure and is generally of the order of 1–10 ns [27, 52–55]. For τi, values between 100 to 500

ps can be assumed, based on e.g. 15N spin relaxation rates and MD simulations [56, 57]. In

general, τc and τi can be specified as user input in DEER-PREdict.

For the generalized order parameter, S, we use the factorization into contributions from

radial and angular internal motions introduced by Brüschweiler et al. [49], S2 ¼ S2
radialS

2
angular.

The expressions for S2
radial and S2

angular were derived from a jump model that treats the N con-

formers of the rotamer library as N discrete states with equal probabilities (1/N) [50]. In reality,

the various dihedral angles of the spin label have different free energy barriers, resulting in res-

idence times between jumps ranging from less than 1 to several ns [17].

S2
radial ¼

hr� 3i
2

hr� 6i
ð12Þ

where r is the proton-electron distance and the brackets denote averages over the conformers
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weighted by the respective Boltzmann weights, pi, i.e. hr� 3i ¼
PN

i r
� 3
i pi and hr� 6i ¼

PN
i r
� 6
i pi.

S2
angular ¼

3

2
cos 2 O �

1

2

� �

¼
XN

i;j

3

2

ri � rj
rirj

 !2

�
1

2

" #

pipj ð13Þ

where O is the angle between the vectors ri and rj, connecting a backbone proton with the ith
and jth rotamer states, respectively. The relaxation enhancement rate for a single protein struc-

ture is calculated using Eq 8, and assuming that the motion of the paramagnetic label is much

faster than the protein conformational changes, the ensemble average is estimated as

hG2i ¼
XM

k

wkG2;k; ð14Þ

where M is the number of configurations or frames of the simulation trajectory. In the case

of unbiased simulations, the statistical weights, wl, are simply 1/M. Optionally, a list of

weights can be provided by the user, e.g. to reweight a biased MD simulation [58, 59] or to

incorporate the prediction of the PRE rates into a Bayesian/maximum entropy reweighting

scheme [1].

For samples with particularly high PRE rates it can be infeasible to obtain Γ2 from multiple

time-point measurements [60]. In such and other cases, the PRE is sometimes probed indi-

rectly from the ratio of the peak intensities in 1H,15N-HSQC spectra of the spin-labeled protein

in the oxidized and reduced state. Assuming that the intensity of the proton magnetization

decays exponentially—by transverse relaxation only—during the total INEPT time of the

HSQC measurement [61], td, the intensity ratio is estimated as

Ipara
Idia
¼

Rred
2
exp ð� G2tdÞ
Rred

2
þ G2

: ð15Þ

Requirements and installation

The main requirements are Python 3.6–3.8 and MDAnalysis 1.0 [30, 62]. In an environment

with Python 3.6–3.8, DEER-PREdict can readily be installed through the package manager PIP

by executing
1 pip install DEERPREdict

Package stability

Tests reproducing DEER and PRE data for the protein systems studied in this article, as well

as for a nanodisc [29], are performed automatically using Travis CI (travis-ci.com/github/

KULL-Centre/DEERpredict) every time the code is modified on the GitHub repository. The

same tests can also be run locally using the test running tool pytest.

Results

In the following, we present applications of our tool to the prediction of DEER distance distri-

butions and PRE intensity ratios of three folded proteins.

The code snippets reported in this section pertain to DEER-PREdict version 0.1.7. A Jupy-

ter Notebook to reproduce the results shown below (article.ipynb) can be found in the tests/
data folder on the GitHub repository. Up-to-date documentation is available at deerpredict.

readthedocs.io.
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Case study 1: DEER data for HIV-1 protease

HIV-1 protease (HIV-1PR) is a homodimeric aspartic hydrolase involved in the cleavage of

the gag-pol polyprotein complex. The inhibition of this process affects the life cycle of the

HIV-1 virus, rendering it noninfectious [63]. The HIV-1PR monomer is composed of 99 resi-

dues and presents a structurally stable core region (residues 1-43 and 58-99) and a dynamic

region characterized by a β-hairpin turn, called the flap (residues 44-57). The active site is

located at the interstice between the core regions of the two monomers, in proximity to the cat-

alytic D25 residues. This cavity is closed off by the dynamic flap regions, which are considered

to act as a gate controlling the access to the active site. The dynamics of the flap regions are of

utmost importance for the development of inhibitors, and have been extensively studied, both

experimentally and in silico [44, 64–69]. Based on the relative position of the flaps, three main

conformational states have been proposed. In X-ray crystallography, the closed state is typi-

cally observed for the ligand-bound enzyme (e.g. PDB codes 3BVB [70] and 2BPX [71]), the

semi-open state is predominant for the apo form (e.g. PDB code 1HHP [72]) whereas the

wide-open state has been observed for variants (e.g. PDB codes 1TW7 [73] and 1RPI [74])

[69]. In DEER measurements, these conformational states can be resolved by spin-labeling

sites K55 and K55’ (see S1 Text and S2 Fig).

To assess the predictive ability of DEER-PREdict, we generated conformational ensembles

of the HIV-1PR homodimer via two different approaches: (a) a single 500-ns unbiased MD

simulation, and (b) four independent 125-ns MD simulations restrained with experimental

residual dipolar couplings (RDC) data [58, 75] from Roche et al. [65, 66] (see S1 Text for meth-

odological details). The initial configuration of our simulations is the X-ray crystal structure of

the active-site mutant D25N bound to the inhibitor Darunavir (PDB code 3BVB).

Fig 2 presents a comparison of experimental DEER distance distributions and echo inten-

sity curves with predictions from simulation trajectories of 1,000 frames sampled every 0.5 ns.

The echo intensity curves are calculated using Eq 6, where the λ is estimated to 0.0922 by fit-

ting the experimental dipolar evolution function to the corresponding curve derived from the

experimental P(r) via Eq 3. For a single trajectory, the analysis is performed in 13 s on a 1.7

GHz processor by running the following code:
1 import MDAnalysis
2 from DEERPREdict.DEER import DEERpredict
3 u = MDAnalysis.Universe(’conf.pdb’,’traj.xtc’)
4 DEER = DEERpredict(u,residues =[55, 55],chains=[’A’,’B’],
temperature = 298)
5 DEER.run()

The third line generates the MDAnalysis Universe object from an XTC trajectory and a PDB

topology. The fourth line initializes the DEERpredict object with the spin-labeled residue

numbers and the respective chain IDs. The fifth line runs the calculations and saves per-frame

and ensemble-averaged data to res-55-55.hdf5 and res-55-55.dat, respectively, as well as the ste-

ric partition functions of sites K55 and K55’ to the file res-Z-55-55.dat.
In the experimental distance distribution, the main peak at�3.3 nm corresponds to the

closed state whereas the second peak between 4 and 5 nm is characteristic of the wide-open

state. The shoulder peak at�2.8 nm has been identified as an open-like state known as the

curled/tucked conformation [9, 76, 77]. The results of our unbiased and restrained simulations

are in substantial agreement with the findings of Roche et al. [65, 66], indicating that the flaps

of the inhibitor-free HIV-1PR are predominantly in closed conformation. Compared to the

distance distribution calculated from the starting configuration of PDB code 3BVB (see Fig 1),

predictions based on MD trajectories more accurately reproduce the shape of the shoulder and

the main peak of the experimental P(r). Moreover, using the RDC data as restraints leads to a
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significant improvement in the agreement between simulations and experiments, with the

RMSD decreasing from 0.07 for the unbiased to 0.03 for the RDC ensemble-biased simula-

tions. However, in the simulations we do not observe the wide-open state. This discrepancy

could be due to insufficient sampling or could be attributed to the difference in sequence

between the simulated protein and the experimental construct.

Case study 2: DEER data for T4 lysozyme

Lysozyme from the T4 bacteriophage (T4L) has long been used as a model system in the

study of protein structure and dynamics [78–83]. Here, we focus on the L99A and the triple

L99A-G113A-R119P mutants which are structurally similar and mainly differ in the relative

populations of their major conformational states. The L99A variant presents a 150 Å3 hydro-

phobic pocket capable of binding hydrophobic ligands and has been thoroughly studied to fur-

ther our understanding of the dynamics and selectivity of the binding pocket [78, 84]. The

L99A variant occupies two distinct conformational states: the ground state (G) and the tran-

sient excited state (E), amounting for 97% and 3% of the population, respectively. The large-

scale motions converting the G into the E state occur on the millisecond time scale and result

in the occlusion of the cavity, which is occupied by the side chain of F114 in the E state [82].

The additional G113A and R119P mutations in the triple-mutant variant interconvert the pop-

ulations of the conformational states to 4% for the G state and 96% for the E state [82]—note

that, here and in the following, we refer to the G and E states based on their structural similar-

ity to the L99A variant rather than on their relative populations. These conformational equilib-

ria have been studied by DEER for various pairs of spin-labeled sites, which effectively resolve

the G and E states as separate peaks of the P(r) [83].

Here, we compare DEER distance distributions calculated with DEER-PREdict for two

pairs of probe positions (D89C–T109C and T109C–N140C) with the corresponding experi-

mental data by Lerch et al. [83]. First, we calculate the P(r) of the single states using PDB code

3DMV for the G states and PDB codes 2LCB and 2LC9 for the E states of single and triple

mutants, respectively. Second, the P(r)’s are linearly combined based on the experimentally

derived ratios of G and E populations (97:3 for L99A and 4:96 for L99A-G113A-R119P) [82].

Additionally, we predict DEER distance distributions from previously reported metadynamics

Fig 2. Comparing experiments and simulations for HIV1-PR. DEER distance distributions (A) and echo intensity

curves (B) obtained by Torbeev et al. [44] from DEER experiments (blue), and calculated using DEER-PREdict from

unbiased (orange) and RDC ensemble-biased MD simulations (red).

https://doi.org/10.1371/journal.pcbi.1008551.g002
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MD simulations of L99A and L99A-G113A-R119P [80] (see S1 Text for methodological

details). In these calculations, the average over the trajectory is weighted by exp(Fbias/kBT),

where Fbias is the final static bias for each frame and kBT is the thermal energy. The analysis of

a trajectory of 6,670 frames is performed in 3 min on a 1.7 GHz processor executing the follow-

ing lines of code:
1 import MDAnalysis
2 from DEERPREdict.DEER import DEERpredict
3 import numpy as np
4 u = MDAnalysis.Universe(’conf.pdb’,’traj.xtc’)
5 for residues in [[89, 109],[109, 140]]:
6 DEER = DEERpredict(u,residues = residues,temperature = 298,
z_cutoff = 0.1)
7 DEER.run(weights = np.exp(Fbias/(0.298�8.3145)))

In line six, we specify the positions of the spin-labels, the temperature at which the metady-

namics simulations were performed and a non-default value for the Z cutoff. In line seven, we

provide the weights of each trajectory frame, generated from the array of Fbias values.

Fig 3 shows a comparison between the experimental distance distributions obtained by

Lerch et al. [83] and our predictions. In general, the calculated distributions fall within the

experimental ranges of inter-probe distances and are particularly accurate for the D89C–

T109C spin-labeled pair in metadynamics simulations. The sharper shape of the experimen-

tal P(r)’s, relative to the calculated distributions, could be due to the cryogenic temperatures

at which DEER experiments are conducted, whereas simulations were performed at room

temperature. For the T109C–N140C spin-labeled pair of the triple variant, the discrepancy

between predicted and calculated P(r)’s might be explained by considering that distances

shorter than 1.5 nm fall below the range probed by DEER experiments. On the other hand,

the inaccurate predictions of the T109C–N140C P(r) for the single (L99A) variant is greater

than expected. Such discrepancies may be due both to errors in the protein structure or in

the DEER-calculations. While our results cannot distinguish between these scenarios, we fol-

low previous work [14] by examining whether the discrepancies can can be attributed to the

error on the Boltzmann probabilities of the rotamer states, pinti . We thus use a Bayesian/maxi-

mum entropy (BME) procedure to show that a small change in the original rotamer weights

Fig 3. Comparing experiments with simulations and structures of T4 lysozyme variants. DEER distance

distributions for probe positions (A) D89C–T109C and (B) T109C–N140C of the single (blue) and the triple variant

(red). Solid lines are the experimental data by Lerch et al. [83], dotted lines are calculated from PDB codes and dashed

lines are predictions from metadynamics (MTD) simulations by Wang and coworkers [80].

https://doi.org/10.1371/journal.pcbi.1008551.g003
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can lead to a substantial improvement of the agreement with the experimental data (see S1

Text and S3 Fig).

Case study 3: PRE data for Acyl-CoA-binding protein

The RLA is well known in the EPR community and generally favored over e.g. a Cα-based

approach as discussed elsewhere [3, 13, 26]. In the presented software, we apply the same

improved modeling of the probe flexibility also to the prediction of PRE rates and intensity

ratios.

Our test data is the PRE data for the bovine Acyl-coenzyme A Binding Protein (ACBP)

reported by Teilum et al. [53]. In this study the structural behavior of ACBP under native and

mildly-denaturing conditions was investigated via the SDSL of five positions in the amino acid

sequence: T17C, V36C, M46C, S65C and I86C. Here, we focus on the native state of ACBP for

which an NMR structure comprising 20 conformers has been refined from residual dipolar

couplings (RDC) and deposited in the Protein Data Bank (PDB code 1NTI). Fig 4 shows a

comparison between the experimental data and the intensity ratios calculated from the Γ2

values averaged over the 20 conformations of the PDB entry. A good overall agreement is

achieved across the different probe positions. Notably, using the RDC-refined structure, we

reproduce most of the structural features observed in the PRE experiments, including the

proximity of residues 24, 27, 31 and 34 to the spin-labeled residue 86, which is consistent with

a helix-turn-helix motif. The predicted intensity ratios are generated in 1.5 s on a 1.7 GHz pro-

cessor executing the following code:
1 import MDAnalysis
2 from DEERPREdict.PRE import PREpredict
3 u = MDAnalysis.Universe(’1nti.pdb’)
4 for res in [17, 36, 46, 65, 86]:
5 PRE = PREpredict(u,res,temperature = 298,atom_selection=’H’)
6 PRE.run(tau_c = 2e-09,tau_t = 2�1e-10,delay = 1e-2,r_2 = 12.6,
wh = 750)

Fig 4. Calculated and experimental PRE HSQC intensity ratios for the T17C, V36C, M46C, S65C and I86C

mutants of ACBP. Blue lines represent the experimental data [53], with the associated ±0.1 error shown by the blue

shaded areas. Red lines represent intensity ratios calculated from PDB code 1NTI with τc = 2 ns, τt = 0.2 ns, td = 10 ms,

R2 = 12.6 s−1.

https://doi.org/10.1371/journal.pcbi.1008551.g004
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At line three, we load PDB code 1NTI as an MDAnalysis Universe object. We then use a for

loop to calculate the PRE data from the distances between amide protons and the spin-label

N-O group at five different positions along the amino acid sequence. In the last line we specify

τc = 2 ns, τt = 0.2 ns, td = 10 ms, R2 = 12.6 s−1 and ωI = 2π × 750 MHz. Per-frame and ensem-

ble-averaged PRE data are automatically saved to files named res-�.pkl and res-�.dat, respec-

tively, whereas per-frame steric partition functions are saved to res-Z-�.dat.
As detailed in S1 Text and S4 Fig, the steric partition functions provided by DEER-PREdict

can be used to predict whether a position in the sequence is likely to accommodate the para-

magnetic probe within the wild-type structure. Besides aiding the interpretation of experimen-

tal data, this feature can be instrumental to designing and enhancing the success-rate of time-

and labor-intensive SDSL experiments.

As previously discussed, the explicit treatment of the paramagnetic probe may be crucial

for the accurate back-calculation of DEER data, and even more so for PRE predictions, due to

the hr−6i-dependence of the PRE. A common way to restrain MD simulations or to back-calcu-

late PRE experimental data without explicitly simulating the paramagnetic probe is to approxi-

mate the electron location to the position of the Cβ atom of the spin-labeled residue [85]. The

advantage of this approach is that (a) multiple labeling sites can be analyzed in a single simula-

tion and (b) the explicit atom is present in the simulation making the calculation of PREs

straightforward. Cβ-based calculations may, however, be prone to over- or underestimating

electron-proton distances by several Å, thereby introducing a systematic error. The impact of

the Cβ-approximation on the accuracy of PRE predictions is illustrated in S5 and S6 Figs for

the case of ACBP (see also S1 Text).

Conclusion

We have introduced an open-source software program with a fast implementation of the RLA

in tandem with protein ensemble averaging, for the calculation of DEER and PRE data. Using

three examples, we have highlighted the capabilities of our implementation: (a) the extension

of the RLA for DEER data from a protein ensemble and (b) the calculation of PRE rates and

intensity ratios with the same approach.

The structural interpretation of DEER and PRE measurements requires an accurate treat-

ment of the structure and conformational heterogeneity of the spin labels. In the presented

software, this is achieved using the RLA and, in the case of the PRE, a model-free approach to

describe the dynamics. Relative to simulations of the explicitly spin-labeled mutants, the RLA

presents the particular advantage of enabling the prediction for multiple SDSL experiments

from a single simulation of the wild type sequence.

Availability and future directions

The software is implemented using the popular trajectory analysis package MDAnalysis, ver-

sion 1.0 [30] and is available on GitHub at github.com/KULL-Centre/DEERpredict. DEER-

PREdict is also distributed as a PyPI package (pypi.org/project/DEERPREdict) and archived

on Zenodo (DOI: 10.5281/zenodo.3968394). DEER-PREdict and MDAnalysis are published

and distributed under GPL licenses, version 3 and 2, respectively.

DEER-PREdict has a general framework and can be readily extended to encompass non-

protein biomolecules as well as additional rotamer libraries of paramagnetic groups. More-

over, the software can be augmented with a module to predict Förster resonance energy trans-

fer data, combining the insertion routines already implemented for MTSSL probes with

rotamer libraries for fluorescent dyes.
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Supporting information

S1 Text. Supporting information for “DEER-PREdict: Software for efficient calculation of

spin-labeling EPR and NMR data from conformational ensembles”.

(PDF)

S1 Fig. Influence of Z cutoff on predicted DEER and PRE NMR data. (A) DEER distance

distributions calculated from RDC ensemble-biased MD simulations of HIV-1PR. (B) Pre-

dicted intensity ratios for ACBP spin-labeled at position 86 obtained from PDB code 1NTI

with τc = 2 ns, τt = 0.2 ns, td = 10 ms, R2 = 12.6 s−1. DEER and PRE predictions are performed

using three different cutoff values of the steric partition function, Z, namely 0.05 (blue lines),

0.5 (orange lines) and 0.8 (red lines).

(TIF)

S2 Fig. Comparison of DEER data from Torbeev et al. [44] with X-ray crystal structures

deposited in the Protein Data Bank. DEER distance distributions (A) and echo intensity

curves (B) obtained by Torbeev et al. [44] from DEER experiments (blue), and calculated

using X-ray crystal structures representative of closed (PDB code 2BPX, orange), semi-

open (PDB code 1HHP, green) and wide-open (PDB code 1TW7, red) HIV-1PR conforma-

tions.

(TIF)

S3 Fig. Optimization of rotamer weights using a Bayesian/maximum entropy procedure.

(A) χ2 vs φeff for various values of the confidence parameter, θ. (B) Distance distributions cal-

culated from PDB codes 3DMV and 2LCB, using optimized weights obtained for various θ val-

ues. (C) Original [24] and modified weights of the MTSSL 175 K rotamer library after BME

reweighting with θ = 4. DEER distance distributions for probe positions (D) D89C–T109C

and (E) T109C–N140C of the single (blue) and the triple variant (red). Solid lines are the

experimental data by Lerch et al. [83]; dotted and dashed lines are from PDB codes 3DMV,

2LC9 and 2LCB using the original and the BME-reweighted (θ = 4) MTSSL 175 K rotamer

library.

(TIF)

S4 Fig. Steric partition function quantifying the fitness of the rotamers at the spin-labeled

site. Steric partition function calculated from rotamer-protein van der Waals interactions for

five spin-labeled mutants of ACBP. The horizontal dashed line indicates the cutoff used in the

criterion for discarding protein conformations where the placement of the rotamer is charac-

terized by steric clashes with the surrounding residues.

(TIF)

S5 Fig. Comparison between RLA and Cβ-based PRE predictions. PRE intensity ratios for

ACBP spin labeled at position 65 calculated for (A) τc = 2 ns and (B) τc = 0.5 ns. Blue lines rep-

resent the experimental data [53], with the associated ±0.1 error shown by the blue shaded

areas. Orange and red lines represent Cβ-based and RLA-based predictions, respectively.

(TIF)

S6 Fig. Dependence on τc of the RMSD between experimental and predicted PRE ratios of

ACBP: Comparison of optimal τc values for RLA vs. Cβ-based approach. Red and blue lines

are obtained using the RLA and approximating the electron location with the position of the

Cβ atom, respectively. Solid and dashed lines represent the RMSD values calculated from all

the data points and from intensity ratios in the dynamic range 0.1< Ipara / Idia< 0.9.

(TIF)
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56. Khan SN, Charlier C, Augustyniak R, Salvi N, Déjean V, Bodenhausen G, et al. Distribution of Pico- and

Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation. Biophysical Journal. 2015;

109(5):988–999. https://doi.org/10.1016/j.bpj.2015.06.069 PMID: 26331256

57. Rezaei-Ghaleh N, Parigi G, Zweckstetter M. Reorientational Dynamics of Amyloid-β from NMR Spin

Relaxation and Molecular Simulation. The Journal of Physical Chemistry Letters. 2019; 10(12):3369–

3375. https://doi.org/10.1021/acs.jpclett.9b01050 PMID: 31181936

58. Camilloni C, Cavalli A, Vendruscolo M. Replica-Averaged Metadynamics. J Chem Theory Comput.

2013; 9(12):5610–5617. https://doi.org/10.1021/ct4006272 PMID: 26592295

59. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;.

https://doi.org/10.1063/1.2408420 PMID: 17212484

60. Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, et al. Mechanistic View of

hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation

and Arginine Methylation. Molecular Cell. 2018; 69(3):465–479.e7. https://doi.org/10.1016/j.molcel.

2017.12.022 PMID: 29358076

61. Battiste JL, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear

nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhau-

ser effect data. Biochemistry. 2000; 39(18):5355–5365. https://doi.org/10.1021/bi000060h PMID:

10820006

62. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S, et al. MDAnalysis: A Python Package

for the Rapid Analysis of Molecular Dynamics Simulations. In: Proceedings of the 15th Python in Sci-

ence Conference. SciPy; 2016. p. 98–105. Available from: https://doi.org/10.25080/majora-629e541a-

00e.

63. Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, et al. Active human immunodefi-

ciency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988; 85(13):4686–4690.

https://doi.org/10.1073/pnas.85.13.4686 PMID: 3290901

64. Blackburn ME, Veloro AM, Fanucci GE. Monitoring inhibitor-induced conformational population shifts in

HIV-1 protease by pulsed EPR spectroscopy. Biochemistry. 2009; 48(37):8765–8767. https://doi.org/

10.1021/bi901201q PMID: 19691291

65. Roche J, Louis JM, Bax A. Conformation of inhibitor-free HIV-1 protease derived from NMR spectros-

copy in a weakly oriented solution. ChemBioChem. 2015; 16(2):214–218. https://doi.org/10.1002/cbic.

201402585 PMID: 25470009

66. Roche J, Louis JM, Bax A, Best RB. Pressure-induced structural transition of mature HIV-1 Protease

from a combined NMR/MD simulation approach. Proteins. 2015; 83(12):2117–2123. https://doi.org/10.

1002/prot.24931 PMID: 26385843

PLOS COMPUTATIONAL BIOLOGY DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008551 January 22, 2021 17 / 18

https://doi.org/10.1021/ja00033a002
https://doi.org/10.1021/ja031580d
http://www.ncbi.nlm.nih.gov/pubmed/15125681
https://doi.org/10.1021/cr900033p
http://www.ncbi.nlm.nih.gov/pubmed/19522502
https://doi.org/10.1021/ja205836j
http://www.ncbi.nlm.nih.gov/pubmed/21910444
https://doi.org/10.1016/S0022-2836(02)01039-2
https://doi.org/10.1016/S0022-2836(02)01039-2
http://www.ncbi.nlm.nih.gov/pubmed/12441112
https://doi.org/10.1021/jacs.8b04792
http://www.ncbi.nlm.nih.gov/pubmed/30124042
https://doi.org/10.1021/jacs.0c02088
https://doi.org/10.1021/jacs.0c02088
http://www.ncbi.nlm.nih.gov/pubmed/32840111
https://doi.org/10.1016/j.bpj.2015.06.069
http://www.ncbi.nlm.nih.gov/pubmed/26331256
https://doi.org/10.1021/acs.jpclett.9b01050
http://www.ncbi.nlm.nih.gov/pubmed/31181936
https://doi.org/10.1021/ct4006272
http://www.ncbi.nlm.nih.gov/pubmed/26592295
https://doi.org/10.1063/1.2408420
http://www.ncbi.nlm.nih.gov/pubmed/17212484
https://doi.org/10.1016/j.molcel.2017.12.022
https://doi.org/10.1016/j.molcel.2017.12.022
http://www.ncbi.nlm.nih.gov/pubmed/29358076
https://doi.org/10.1021/bi000060h
http://www.ncbi.nlm.nih.gov/pubmed/10820006
https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.1073/pnas.85.13.4686
http://www.ncbi.nlm.nih.gov/pubmed/3290901
https://doi.org/10.1021/bi901201q
https://doi.org/10.1021/bi901201q
http://www.ncbi.nlm.nih.gov/pubmed/19691291
https://doi.org/10.1002/cbic.201402585
https://doi.org/10.1002/cbic.201402585
http://www.ncbi.nlm.nih.gov/pubmed/25470009
https://doi.org/10.1002/prot.24931
https://doi.org/10.1002/prot.24931
http://www.ncbi.nlm.nih.gov/pubmed/26385843
https://doi.org/10.1371/journal.pcbi.1008551


67. Hornak V, Okur A, Rizzo RC, Simmerling C. HIV-1 protease flaps spontaneously close to the correct

structure in simulations following manual placement of an inhibitor into the open state. J Am Chem Soc.

2006; 128(9):2812–2813. https://doi.org/10.1021/ja058211x PMID: 16506755

68. Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, et al. The Role of Select Sub-

type Polymorphisms on HIV-1 Protease Conformational Sampling and Dynamics. J Biol Chem. 2014;

289(24):17203–17214. https://doi.org/10.1074/jbc.M114.571836 PMID: 24742668

69. Liu Z, Casey TM, Blackburn ME, Huang X, Pham L, de Vera IMS, et al. Pulsed EPR characterization of

HIV-1 protease conformational sampling and inhibitor-induced population shifts. Physical Chemistry

Chemical Physics. 2016; 18(8):5819–5831. https://doi.org/10.1039/c5cp04556h PMID: 26489725

70. Sayer JM, Liu F, Ishima R, Weber IT, Louis JM. Effect of the Active Site D25N Mutation on the Struc-

ture, Stability, and Ligand Binding of the Mature HIV-1 Protease. Journal of Biological Chemistry. 2008;

283(19):13459–13470. https://doi.org/10.1074/jbc.M708506200 PMID: 18281688

71. Munshi S, Chen Z, Li Y, Olsen DB, Fraley ME, Hungate RW, et al. Rapid X-ray diffraction analysis of

HIV-1 protease–inhibitor complexes: inhibitor exchange in single crystals of the bound enzyme. Acta

Crystallographica Section D Biological Crystallography. 1998; 54(5):1053–1060. https://doi.org/10.

1107/S0907444998003588 PMID: 9757136

72. Spinelli S, Liu QZ, Alzari PM, Hirel PH, Poljak RJ. The three-dimensional structure of the aspartyl prote-

ase from the HIV-1 isolate BRU. Biochimie. 1991; 73(11):1391—1396. https://doi.org/10.1016/0300-

9084(91)90169-2 PMID: 1799632

73. Martin P, Vickrey JF, Proteasa G, Jimenez YL, Wawrzak Z, Winters MA, et al. “Wide-Open” 1.3 Å Struc-

ture of a Multidrug-Resistant HIV-1 Protease as a Drug Target. Structure. 2005; 13(12):1887–1895.

https://doi.org/10.1016/j.str.2005.11.005 PMID: 16338417

74. Logsdon BC, Vickrey JF, Martin P, Proteasa G, Koepke JI, Terlecky SR, et al. Crystal Structures of a

Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site

Cavity. Journal of Virology. 2004; 78(6):3123–3132. https://doi.org/10.1128/JVI.78.6.3123-3132.2004

PMID: 14990731

75. Camilloni C, Vendruscolo M. A tensor-free method for the structural and dynamical refinement of pro-

teins using residual dipolar couplings. J Phys Chem B. 2015; 119(3):653–661. https://doi.org/10.1021/

jp5021824 PMID: 24824082

76. Heaslet H, Rosenfeld R, Giffin M, Lin YC, Tam K, Torbett BE, et al. Conformational flexibility in the flap

domains of ligand-free HIV protease. Acta Crystallographica Section D Biological Crystallography.

2007; 63(8):866–875. https://doi.org/10.1107/S0907444907029125 PMID: 17642513

77. Huang X, Britto MD, Kear-Scott JL, Boone CD, Rocca JR, Simmerling C, et al. The Role of Select Sub-

type Polymorphisms on HIV-1 Protease Conformational Sampling and Dynamics. Journal of Biological

Chemistry. 2014; 289(24):17203–17214. https://doi.org/10.1074/jbc.M114.571836 PMID: 24742668

78. Eriksson AE, Baase WA, Wozniak JA, Matthews BW. A cavity-containing mutant of T4 lysozyme is sta-

bilized by buried benzene. Nature. 1992; 355(6358):371–373. https://doi.org/10.1038/355371a0 PMID:

1731252

79. Kato H, Vu ND, Feng H, Zhou Z, Bai Y. The folding pathway of T4 lysozyme: an on-pathway hidden fold-

ing intermediate. J Mol Biol. 2007; 365(3):881–891. https://doi.org/10.1016/j.jmb.2006.10.048 PMID:

17097105

80. Wang Y, Papaleo E, Lindorff-Larsen K. Mapping transiently formed and sparsely populated conforma-

tions on a complex energy landscape. eLife. 2016; 5. https://doi.org/10.7554/eLife.17505 PMID:

27552057

81. Mulder FA, Hon B, Muhandiram DR, Dahlquist FW, Kay LE. Flexibility and ligand exchange in a buried

cavity mutant of T4 lysozyme studied by multinuclear NMR. Biochemistry. 2000; 39(41):12614–12622.

https://doi.org/10.1021/bi001351t PMID: 11027141

82. Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, et al. Solution structure of a

minor and transiently formed state of a T4 lysozyme mutant. Nature. 2011; 477(7362):111–114. https://

doi.org/10.1038/nature10349 PMID: 21857680
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